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Using a new formulation of the flutter problem [1] and earlier results [2, 3], an algorithm is proposed for investigating the flutter 
of a plate of arbitrary slmpe in the plane for arbitrary homogeneous boundary conditions. © 1997 Elsevier Science Ltd. All rights 
reserved. 

The majority of investigations of panel flutter apply to rectangular plates in the special formulation when the velocity 
vector of the flow is parallel to one of the sides (see the review in [4]). The flutter of circular and elliptic plates 
has been studied by the Bubnov-Galerkin method in the two-term approximation [5] (in the latter case the velocity 
vector is parallel to the major axis of the ellipse). Thus, a large class of important practical problems has not been 
covered. Below we fill this gap. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  A N D  D I S C R E T I Z A T I O N  

An investigation olf the stability of vibrations of a thin plate of arbitrary shape eceupying a domain G with boundary 
3G in thex, y plane with gas flowing past the plate leads to the eigenvalue problem [1] for the deflection amplitude 
~ = q~x, y), (x, y) ~ G 

DA2cp-[~Vqrad~p=2~p; D=Eh31(12(I-v2)), [~=kpolc 0 (1.1) 

q~l~ = 0 ,  Mtpl~ = 0 (1.2) 

Here E and v are Yaung modulus and the Poisson's ratio of the material of the plate, h is the plate thickness, V 
= (Ix, ~ )  is the gas velocity vector, p0 and co are the pressure and velocity of sound in the unperturbed flow, and 
k is the polytrope index of the gas. 

The eigenvalue ~ is related to the oscillation frequency by the equation 

X---ph~- i ~  (1.3) 

where p is the density of the plate material. 
In (1.2) M is a differential operator known in the theory of plates, defined by the type of boundary conditions. 

A method of solvin[, eigenvalue problem (1.1)-(1.3) has been described for an arbitrary operator M. 
The plate vibrations will be steady or not, depending on whether Re co < 0 or Re cO > 0. If Xl = 0q + 1~1i is the 

eigenvalue of least modulus, then, by (1.3), F(~xl, [~1) > 0 or F(0q, I]1) < 0 satisfy the given inequalities, where F(¢], 
[~1) = Otl[ ~2) - phil21 • Since a l  = al(V), [~1 = [~1(1~, it follows that the equation F0xl, 111) = 0 defines a neutral 
curve and the corresponding rate of flutter. We are therefore concerned with finding the zeros of F(al(V), 131(V) 
given the flow velocity vector. 

We denote by I the characteristic dimension of G and introduce the following dimensionless coordinates and 
parameters (denoted by primes) 

x=x'l ,  y=y'l, E=E'po, h=h'! 

p=p'po/C2o, co=cO'co/l, V=V'co, 9 = 9 ' l  

Substituting into (1.1) and (1.3), we can verify that the system in the dimensionless variables preserves its form if 
I~ is replaced by a dimensionless parameter k. The prime will henceforth be omitted. 

In place of the C~xrtesian coordinates x, y we introduce curvilinear coordinates r, 0 by x = u(r, 0), y = v(r, 0). 
If the Cauehy-Riernann conditions 
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oau 1 oau oau 1 o~u 
c~'  ~r r ~r r ~0 

are satisfied, then the system of coordinates r, 0 is orthogonal. Now we introduce functions u(r, O) and v(r, O) 
such that 

¥(~) = u(r,O)+io (r,O), ~ = rexp(/0) 

defines a conformal mapping of the circle I ~ I = r ~< 1 onto G. Then (1.1) takes the form 

DA(I¥'(C~)1-2 A(p)-k((Vxur+V.vUr)-~r+l(Vyur-urVx)--~)=~.l¥'(r~)12~ (1.4) 

t • ) 
(u,=Re: ¥\  (~)~/r. j' °r=lm(~(~r]~)) 

in the coordinates (r, 0), the boundary conditions (1.2) being transformed in the well-known way [3]. 
Henceforth we shall assume G to be a simply connected domain and ~G to be a Lyapunov curve. This ensures 

that the fundamental Riemann theorem and the theorem on the correspondence of boundaries are satisfied [6]. 
We put 

f ( r , O )  = ~P(r, O) + ~.l¥'(~)12 q~ 

and write (1.4) as 

DA(l¥'(~)1-2 Ag) = Otr,  qO)+ ~1~'(~)12 qo (1.5) 

It is now obvious that the discretization of boundary-value problem (1.5), (1.2) is completely analogous to that 
described earlier [3] for a biharmonic operator. 

In the circle we choose a grid consisting of m circles whose radii are the positive roots of the Chebyshev polynomial 
T ~  and in each circle we introduce a uniform grid consisting of N = 2n + 1 points, denoting the grid nodes 
b y e .  Here and henceforth i , j  = 1, 2 . . . . .  S, where S = mN. We change [3] to an integral equation and apply 
tof(r, O) Babenko s interpolation formula for functions of two variables in a circle [2]. As a result, we obtain 

qPi -I ~. Boz~I~P j = -~ ~ Biic~ j , zj ='V'(~j)' 2 (1.6) 

Here B is the matrix of the discrete operator inverse to the biharmonic operator with the given boundary 
conditions. 

We denote by D <r) and D f°) the matrices of derivatives with respect to r and 0 obtained by differentiating the 
interpolation formula. Then 

aj=kfV.u.+V,~.)u~=~j, bj = k (vy , . -  v:.)a~=~j 

Now, from (1.6) we obtain the following eigenvalue problem in matrix form for the vector q~ of length S whose 
components are the values of the corresponding function at the grid nodes 

A =I-D-IBZ-n(aD (r~ +bD(°)), Z -l =diag(z~ "s ..... z~ "]) 

a=diag(al ..... as), b=diag(b I ..... b s) 

Let Ix be the eigenvalue of D-IA-IB with the largest modulus. Then ~, = I/gt will be the desired eigenvalue with the 
least modulus. 
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2. D I S C U S S I O N  O F  T H E  M E T H O D  

The method desc:ribed for solving system (1.1)-(1.3) is based on Babenko's global interpolation formula for 
functions of two variables in a circle. The properties of this interpolation are such that it reacts to the degree of 
smoothness of the interpolated function: a smoother function will be approximated more accurately by the 
interpolation formtdla, so the proposed algorithm turns out to be more accurate. 

Since the degree of smoothness of the solution is unknown in advance (the current state of the problem is 
presented in [7]), it :is difficult in practice to use error estimates when computing the eigenvalues [8]. However, a 
qualitative argument can be put forward for the reliability of the algorithm: (a) interpolation by polynomials 
(algebraic and trigo:aometrie ones) is used; polynomials are known [9] to approximate smoother functions with 
higher accuracy; Co) the grid nodes along the radius have been chosen to be the roots of the C-'hebyshev polynomial 
Tz~, which accumulate near the boundary the more rapidly the larger the value of m. The Lebesgue constant is 
thus minimized and the second boundary condition is satisfied to a greater degree, which is important for equations 
with a small parameter of the leading operator. A final argument supporting the reliability of the algorithm can 
be made on the basis of numerical experiments only. 

3. R E S U L T S  

All the computations were performed for the following parameter values: k = 1.4, v = 0.33, Co = 331.26 m/s,p 
= 1.0133 x 10YPa, E - 6.867 x 10 l° Pa, p = 2.7 x 103 kg/m ~, and a relative plate thickness h = 3 x 10 -3. The operator 
M in (1.2) was taken to be the normal derivative (rigid attachment): a) the circle r ~< 1, was taken as G and ~(4) 
= 4, v~ = - v ,  v ,  = o. 

For the dirnensioNess critical velocity we obtained V* = 0.2798. The graphs in Fig. I enable us to form an opinion 
about the shape of deflections: we present Re ¢p(x, 0)/~Pmx (curve l) and Retp(0, Y)/~max (curve 2); b) G bounded 
by an epitrochoid ¥(4) = 4(1 + 0.144), Vx = -V, Vy = 0. 

The critical velocity ff V* = 0.2798. The graphs characterizing the shape of the deflections arepracticaUy the 
same as the corresponding curves presented in the figure for the case of a circle. When Vx = Vy = -V/~t2 we obtained 
V* = 0.2789 for the critical velocity. The graphs of Re ~x , x )  and Re ¢p(x, -x) do not contain any new information 
compared with those presented. 

All computations were performed using three grids: 9 x 31, 11 x 31, 13 x 31 (the number of nodes along the 
radius and around l~he circle, respectively). In all cases the results agree to within 10 -4, showing that the proposed 
method is effective, economical and reliable. 

The results obtained are also of direct interest: the problem of the flutter of a round plate has not been studied 
sufficiently, nor has the solution of the second problem, solved above, been considered before. 

This research was supported financially by the Russian Foundation for Basic Research (95-01-00407). 
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